Голосование


Сколько раз в год вы обращаетесь к врачу?
 
Разработка функциональной схемы измерителя

Особенность УЗДП состоит в использовании в качестве зондирующего сигнала механических вибраций, передаваемых в тело человека. В процессе работы прибора производятся механические колебания элементов тканей на поверхности тела. Распространение ультразвука зависит от плотности, структуры, однородности, вязкости и сжимаемости тканей. Интегративным отражением этих свойств является акустический импеданс(АИ) ткани. АИ характеризует степень сопротивления среды распространению УЗ. АИ= d*c, где d – плотность среды (кг\м), с – скорость распространения УЗ в среде. Циклическое движение элементов тканей на поверхности, производимое пьезоэлектрической пластиной, вызывает свою очередь, силовые воздействия на элементы тканей с более глубоких слоев, и, соответственно, их циклическое перемещение и т.д. Таким образом, за счет передачи силовых воздействий сжатия-растяжения между соседними элементами тканей возникает передача механических вибраций в тело человека, называемое УЗ волной.

В настоящее время в УЗДГ применяется УЗ с частотами до 20 МГц, Так, например, при УЗ обследований головы используют самые низкие частоты порядка 0.5 - 2 МГц, при обследовании периферических сосудов - до 10 МГц, в офтальмологии - до 15 МГц. А чем выше частота, тем ниже минимальная регистрируемая скорость, поэтому ,применяемые в настоящее время УЗДП, имеют ограничения на минимальную регистрируемую скорость.

Указанное ограничение возникает по двум причинам:

из-за зависимости доплеровского сдвига от частоты излучения;

из-за необходимости фильтрации принимаемого сигнала.

Допплеровский сдвиг (разность частот излучаемого и принимаемого сигнала) прямо пропорционален частоте УЗ сигнала, на которой проводится исследование кровотока - т.е. чем ниже частота УЗ, тем меньше допплеровский сдвиг, получаемый при обследовании одного и того же кровотока на различных частотах.

Так, среднее значение минимальной регистрируемой скорости для УЗДП, работающего на частоте 8 МГц, составляет 2 см/с, что, но меньшей мере, вдвое больше величины, характерной для кровотока в малых венах, и более чем на порядок превышает скорость кровотока в капиллярах (табл.1).

Таблица 1. Средняя скорость движения крови в различных сосудах.

Сосуд

Средняя скорость течения в см/с

Аорта

30-60

Большие артерии

20-40

Вены

10-20

Малые артерии, артериолы

1-10

Венулы, малые вены

0.1-1

Капилляры

0.05-0.07

Ограничения, налагаемые на частотный диапазон существующих допплеровских измерителей скорости кровотока, обусловлены, в основном, двумя причинами:

сложностью получения приемлемых параметров УЗ преобразователя, выполненного на основе пьезокерамики, для работы на частотах свыше 10 МГц. Толщина пьезокерамической пластины, используемой в качестве активного элемента, составляет половину длины волны, и на частотах свыше 10 МГц становится меньше 0.2 мм. Из-за существования пор в объеме керамики, напыляемые на противоположные поверхности пьезокерамической пластины электрические контакты образуют электрические соединения друг с другом через эти поры, и такой преобразователь становится непригодным для работы;

существующие в настоящее время схемы построения блоков обработки сигналов УЗ преобразователей (в диапазоне до 16 МГц) предполагают производить эту обработку непосредственно в ВЧ области, что приводит к усложнению схемы, ужесточению требований к параметрам ЭРЭ и, как следствие, к заметному удорожанию всего допплеровского комплекса.

Упрощенная блок схема непрерывно-волнового НЧ УЗ индикатора показана на рисунке 2.1.

Перейти на страницу: 1 2 3